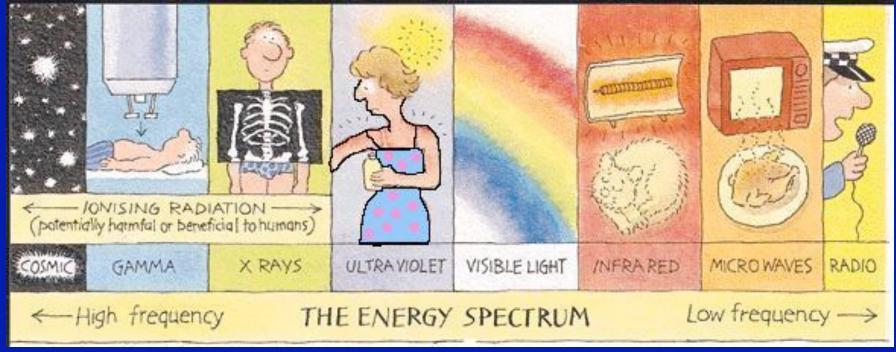

Radiation Basics

George P. Brozowski Regional Health Physicist Region 6



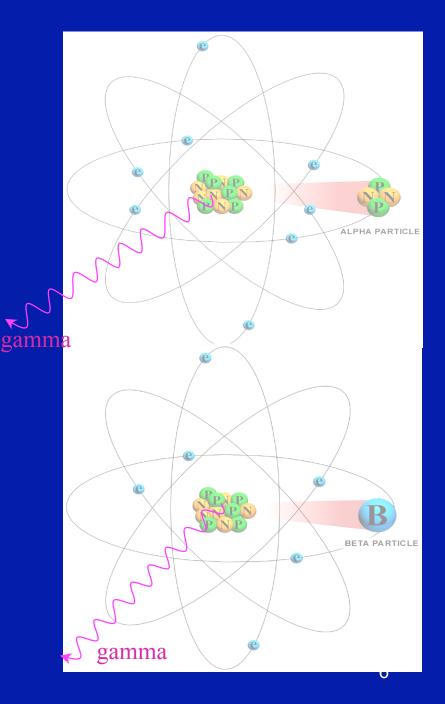
Electromagnetic Spectrum

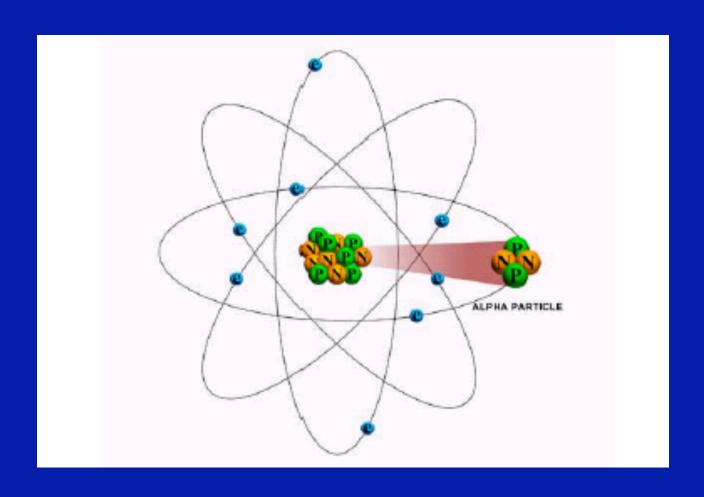
Radiation is Energy

 The energy is given off by unstable (radioactive) atoms and some machines.

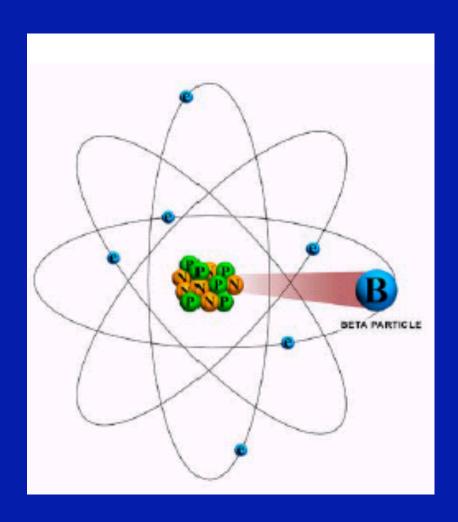
 For this talk, we will be focusing on <u>ionizing</u> radiation

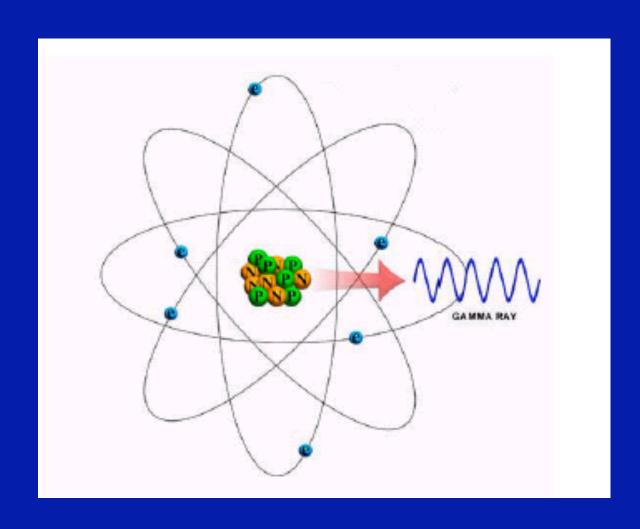
Radiation and Radioactive Material are a Natural Part of Our Lives

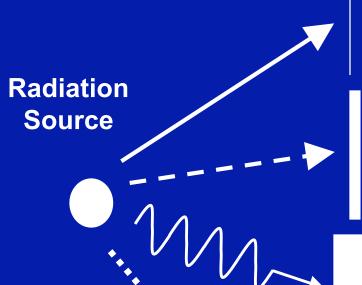

- We are constantly exposed to low levels of radiation from outer space, the Earth, and medicine.
- Low levels of naturally occurring radioactive material are in our environment, the food we eat, and in many consumer products.
- Some consumer products also contain small amounts of man-made radioactive material.



Forms of Radiation


- When unstable atoms transform, they often eject particles from their nucleus. The most common of these are:
 - Alpha Radiation
 High energy, but short range (travels an inch in air, not an external hazard)
 - Beta Radiation
 Longer range (10 20 feet in air) and can be a skin and eye hazard for high activity beta sources.
- Gamma Rays (electromagnetic radiation)
 Often accompany particle radiation. This "penetrating" radiation is an external hazard and can travel 100s of feet in air.


Alpha Particle (α)


Beta Particle (β)

Gamma Ray (y)

Penetration of Different Types of Radiation

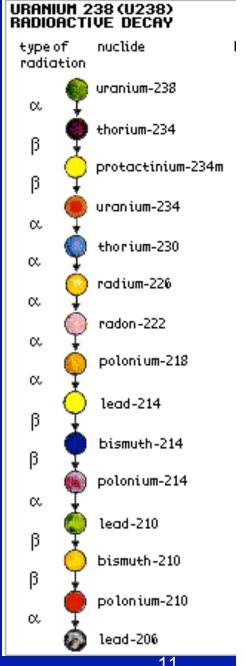
Alpha Particles

Stopped by a sheet of paper

Beta Particles

Stopped by a layer of clothing or less than an inch of a substance (e.g. plastic)

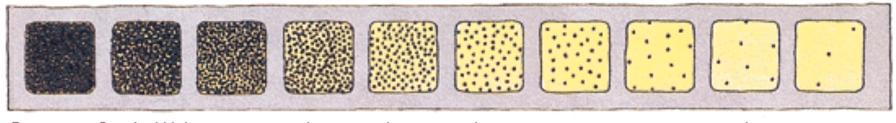
Gamma Rays


Stopped by inches to feet of concrete or less than an inch of lead

Neutrons

Stopped by a few feet of concrete

Unstable Atoms Decay


- The number of "decays" that occur per unit time in the radioactive material tell us how radioactive it is.
 - Units include Curies (Ci), decays per minute (dpm), and Becquerels (decays per second).
- When an unstable atom decays, it transforms into another atom and releases its excess energy in the form of radiation.
- Sometimes the new atom is also unstable, creating a "decay chain"

How Unstable Is It?

- The "Half-Life" describes how quickly Radioactive Material decays away with time. It is the time required for half of the unstable atoms to decay.
- Some Examples:
 - Some natural isotopes (like uranium and thorium) have half-lives that are billions of years,
 - Most medical isotopes (like Technicium-99m) last only a few days

Decay rate of radioactivity: After ten half lives, the level of radiation is reduced to one thousandth

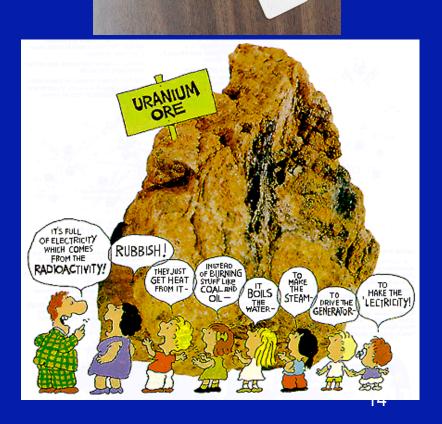
Time: One half life two three four five six seven eight nine

Some Isotopes & Their Half Lives

ISOTOPE	HALF- LIFE	APPLICATIONS
Uranium	billions of years	Natural uranium is comprised of several different isotopes. When enriched in the isotope of U-235, it's used to power nuclear reactor or nuclear weapons.
Carbon-14	5730 y	Found in nature from cosmic interactions, used to "carbon date" items and as radiolabel for detection of tumors.
Cesium-137	30.2 y	Blood irradiators, tumor treatment through external exposure. Also used for industrial radiography.
Hydrogen-3	12.3 y	Labeling biological tracers.
Irridium-192	74 d	Implants or "seeds" for treatment of cancer. Also used for industrial radiography.

The Amount of Radioactivity is NOT Necessarily Related to Size

 Specific activity is the amount of radioactivity found in a gram of material.


 Radioactive material with <u>long half-lives</u> have <u>low</u> <u>specific activity</u>.

1 gram of Cobalt-60

has the same activity as

1800 tons of natural

Uranium

What is a "Dose" of Radiation?

- The more energy deposited into the body, the higher the dose.
- Rem is a unit of measure for radiation dose.
- When radiation's energy is deposited into our body's tissues, that is <u>a dose</u> of radiation.
- Small doses expressed in mrem = 1/1000 rem.
- Rad & R (Roentgens) are similar units that are often equated to the Rem.

Activity and Dose

Activity (amount of radioactive material)	Curie (Ci) 3.7x10 ¹⁰ dps Becquerel (Bq) 1dps
Exposure (in air)	Roentgen
Absorbed dose	Rad
Dose Equivalent	Rem

Dose equivalent (H_T)

Dose equivalent (H_T) means the product of the absorbed dose in tissue, quality factor, and all other necessary modifying factors at the location of interest.

The unit of dose equivalent is the rem

Quality Factor

- 1 for beta and gamma
- 20 for alpha

Committed dose equivalent (H_T,50)

Committed dose equivalent (H_T,50) (CDE)
means the dose equivalent to organs or
tissues of reference (T) that will be
received from an intake of radioactive
material by an individual during the 50year period following the intake.

Total Effective Dose Equivalent

 Total Effective Dose Equivalent (TEDE) is the sum of the external dose equivalent and the committed effective dose equivalent

Comparative Risk

Source	Lifetime Cancer Risk	
5 rems (annual worker limit)	~ 4 x 10 ⁻³	
Smoking Tobacco	~1 x 10 ⁻¹	
Industrial Chemicals (bkg)	~ 1.4 x 10 ⁻³	
Indoor Radon	~ 2 x 10 ⁻³ nonsmokers ~ 1 x 10 ⁻² smokers	
Other Background Radiation (minus Radon) for 70 years	~ 9 x 10 ⁻³	

Typical Doses

Average Dose to US Public from All sources	360 mrem/year
Average Dose to US Public From Natural Sources	300 mrem/year
Average Dose to US Public From Medical Uses	53 mrem/year
Coal Burning Power Plant	0.2 mrem/year
Average dose to US Public from Weapons Fallout	< 1 mrem/year
Average Dose to US Public From Nuclear Power	< 0.1 mrem/year
Occupational Dose Limit for Radiation Workers	5,000 mrem/yr

Coast to coast Airplane roundtrip	5 mrem
Chest X ray	8 mrem
Dental X ray	10 mrem
Head/neck X ray	20 mrem
Shoe Fitting Fluoroscope (not in use now)	170 mrem
CT (head and body)	1,100 mrem
Therapeutic thyroid treatment (dose to the whole	
body)	7,000 mrem

Types of Exposure & Health Effects

Acute Dose

- Large radiation dose in a short period of time
- Large doses may result in observable health effects
 - Early: Nausea & vomiting
 - Hair loss, fatigue, & medical complications
 - Burns and wounds heal slowly
- Examples: medical exposures and accidental exposure to sealed sources

Chronic Dose

- Radiation dose received over a long period of time
- Body more easily repairs damage from chronic doses
- Does not usually result in observable effects
- Examples: Background Radiation and Internal Deposition

Inhalation

At HIGH Doses, We KNOW Radiation Causes Harm

- High Dose effects seen in:
 - Radium dial painters
 - Early radiologists
 - Atomic bomb survivors
 - Populations near Chernobyl
 - Medical treatments
 - Criticality Accidents
- In addition to radiation sickness, increased cancer rates were also evident from high level exposures.

Effects of ACUTE Exposures

Dose (Rads*)	Effects
25-50	First sign of physical effects
25-50	(drop in white blood cell count)
100	Threshold for vomiting
100	(within a few hours of exposure)
320 - 360	~ 50% die within 60 days
320 - 300	(with minimal supportive care)
480 - 540	~50 % die within 60 days
400 - 340	(with supportive medical care)
1,000	~ 100% die within 30 days

^{*} For common external exposures 1 Rad ~ 1Rem = 1,000 mrem

Long-term Effects of Radiation

- Radiation is assumed to increase one's risk of cancer
 - The "normal" chance of dying of cancer is~ 23% (~460 out of 2,000).
 - Each rem is assumed to increase that risk by0.05% (~1 chance in 2,000).

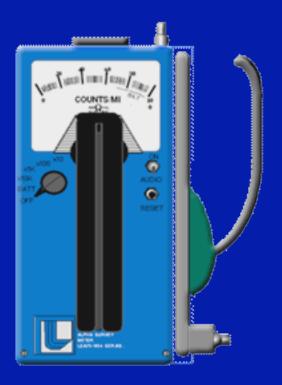
The occupational radiation dose limit to the whole body is 5 rem/yr (OSHA)

EPA (SHEM) Guidelines

- EPA has an Administrative Control Level (ACL) of 500 millirems per year
 - ACL is based on optimization using historical EPA worker dose data
 - ACL is not based on a safety threshold
 - All EPA workers receiving routine exposures above background must have training, wear TLDs and comply with EPA's Safety, Health and Environmental Management Program (SHEM Guidelines, Sec. 38)

SHEM Guidelines

 Waivers to the ACL should be obtained before, or if time-critical, soon after the ACL is exceeded from (in priority order)


- The EPA worker at risk of exposure
- The senior EPA official in charge of operations at site
- Locally responsible Regional Radiation Program Manager (RRPM) or RSO and SHEMP Manager
- The workers' Assistant Administrator, Assistant Regional Administrator, or Lab Director as applicable.

Detecting and Measuring Radiation

The Only Way To Travel!

Detecting Radiation

Alpha Survey Meter

Beta and Gamma Survey Meter

Eberline RO-20 (Ion Chamber)

SE Int'l Monitor 4 (Internal GM)

Eberline PIC 6B (Pressurized Ion Chamber)

Ludlum Model 3(External Detector)

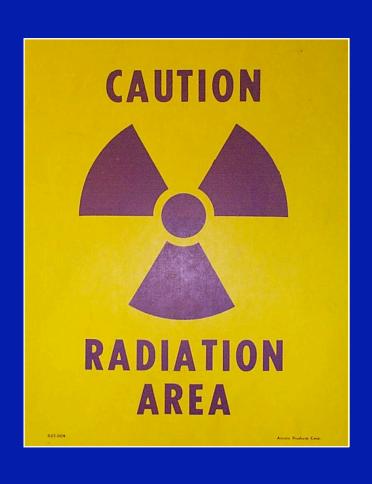
Bicron MicroRem(Plastic Scintillator)

Eberline HP-270 Side Wall probe

Ludlum 44-7End Window

Ludlum 44-9 "Pancake" Probe

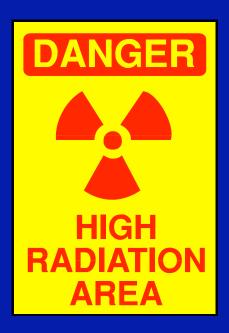
Ludlum 44-3 probe


Eberline AC-3 Alpha Scintillator

Ludlum 43-68 Gas Proportional Detector

Hazard Awareness

- Ionizing radiation may be an easy hazard to detect (i.e., your rad meter starts clicking), but it may not be the only hazard associated with a site
 - Chemicals
 - Tripping hazards
- If you find radiation, find a health physicist!
- Each region has one or more


Radiation Signs

Radiation Signs

RADIOACTIVE SYMBOLS

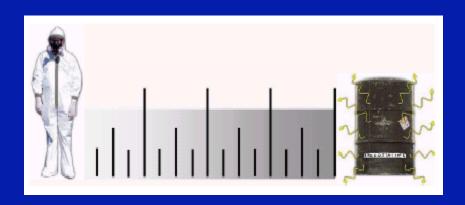

Protecting Yourself from lonizing Radiation

External vs. Internal Hazards

- You don't have to be in physical contact with gamma or beta radiation sources to be harmed
- Gamma radiation can even harm you when the source is fully contained
- Beta radiation can cause burns if left in contact with exposed skin
- All radioactivity, but particularly alpha, is harmful if inhaled or swallowed

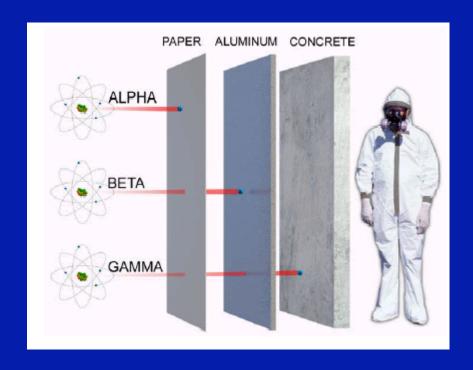
Radiation vs Contamination

Wear appropriate PPE.



For external hazards, remember three words: Time, Distance, Shielding

Minimize your time near the source!



Keep as much distance between you and the source as possible*.

*Tip: Teletectors (telescoping detectors) allow you to take rad readings at a greater distance from a source.

Use appropriate shielding when available*.

*Tip: Use what you have available.

Use an appropriate meter!

(good idea to bag it in contaminated areas, except for alpha detectors since plastic blocks alpha)

The meter must respond to and measure the type of radiation that is present

Plan If You Can

- Evaluate the risk beforehand
- Don't charge into harm's way without a clear purpose in mind
- Don't take unnecessary measurements or samples at the expense of raising your radiation dose
- Even in an emergency, ALARA applies (as low as reasonably achievable)

Regional Radiation Contact

- Anthony Honnellio (R1) 617-918-1456
- Paul Giardina (R2) 212-637-4010
- Cristina Fernandez (R3) 215-814-2178
- Rick Button (R4) 404-562-9135
- Jack Barnette (R5) 312-866-6175

Regional Radiation Contact

- George Brozowski (R6) 214-665-8541
- Robert Dye (R7) 913-551-7605
- Richard Graham (R8) 303-312-7080
- Mike Bandrowski (R9) 415-947-4194
- Rick Poeton (R10) 206-553-8633